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Thallium cuprates Tl(Srl_xBaxLa)CuO5 were synthesized and characterized. Single phases of 
TI(Sr~_~Ba~La)CuO 5 can be obtained for all values o fx  = 0.0-1.0, and they crystallize in a tetragonal 
structure with space group P4/rnmm. Both the a and c lattice parameters increase smoothly with 
increasing x, and TI(Sr l_xBaxLa)CuO5 loses superconductivity for x > 0.3. These observations were 
explained on the basis of how the extent of overlap between the CuO2 layer x 2 -y'~ and the T1 6s bands 
changes as a function of the in-plane C u - O  bond length. �9 1992 Academic Press, Inc. 

For  the superconduct ivi ty  of  the p- type  
cuprate  superconductors ,  the presence  of 
holes in their CuO2 layers is essential  (1-5). 
Holes  may  be generated by oxygen excess ,  
cation vacancy,  or substitution of cations 
with different valence (e.g., Sr z+ for LaS+), 
all of  which are based on nonstoichiometry  
of  the chemical  composi t ions.  There  is yet 
another  way  of  creating holes, as found for 
thallium cuprates  (5-8).  The latter are typi- 
cally of  the 22(n - 1)n phases ,  T1BazCa . 1 
CunOzn+4, or  the 12(n - 1)n phases,  TIBa 2 
Ca n iCunOzn+3. In the 22(n - 1)n phases,  
the T1-O double layers create holes in the 
CuO 2 layers via the overlap of the TI 6s 
bands with the CuO 2 layer x z - y2 bands.  In 
contrast ,  the T1-O single layers of  the 
12(n - 1)n phases  do not create holes, be- 
cause  the bo t tom of  the Tl 6s bands lies 
above  the Fermi  level. This difference be- 
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tween the 22(n - 1)n and the 12(n - 1)n 
phases  arises f rom the fact that the T1 6s 
bands of the T I - O  single layers lie higher in 
energy than those of the T1-O double layers,  
while the x z - y2 bands of the 22(n - 1)n 
and the 12(n - l)n phases  are nearly the 
same in energy (6). The latter is a direct 
consequence  of the fact that the in-plane 
C u - O  bond lengths are similar in the two 
phases  (see below). 

The x 2 - y2 bands of  the CuOz layers are 
antibonding between the copper  and oxygen 
atoms in the in-plane C u - O  bonds (5, 9, 
10). Thus,  shortening of the in-plane C u - O  
bonds,  or equivalently the shortening of the 
a parameter ,  raises the x 2 - f bands (11). 
I f  the in-plane C u - O  bonds of  the 12(n - 
1)n phases  are strongly shortened,  the x 2 - 
y2 bands are raised high enough to make  the 
Fermi level rise above  the bo t tom of  the T1 
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6s bands and hence create holes in the CuO 2 
layers.  Such a modification of T1Ba2CuO 5, 
i.e., TI (SrR)CuO 5 (R = La,  Nd) (12, 13), 
has been  made by replacing the Ba 2+ cations 
at the 9-coordinate sites with smaller cations 
Sr 2+ and R 3+ . According to the formal  oxi- 
dation states Tl 3 +, Sr 2 +, and R 3 +, one might 
expect  a copper  oxidation state Cu 2+ in 
Tl(SrR)CuO5 (R = La,  Nd),  which implies 
no holes in the CuO2 layers and thus no 
superconduct ivi ty  for Tl(SrR)CuO5 (R = 
La,  Nd). Howeve r ,  this phase is a supercon- 
ductor  because  the x 2 - y2 bands are sig- 
nificantly raised due to the very short in- 
plane C u - O  bonds (11). We note that an 
isostructural  phase TI (BaR)CuO 5 (R = La, 
Nd) (7, 8, 14) is not a superconductor ,  most  
likely because  the in-plane C u - O  bonds are 
not short  enough (11). 

The above  discussion suggests that one 
can vary the extent  of  the overlap between 
the x 2 - y2 and the T1 6s bands of the 1201 
phase,  and hence the hole density in the 
CuO 2 layers,  by substituting isovalent cat- 
ions of  different sizes (e.g., Ba 2+ for Sr2+). 
Since Ba 2+ is larger than Sr 2+ , the a parame-  
ter and the in-plane C u - O  bond length of 
TI(Sr 1 _~Ba, R)CuO 5 (x = 0.0-1.0) should in- 
crease gradually with increasing x so that 
the x 2 - y2 bands will be gradually lowered 
in energy as x increases.  Then,  Tl(Sr l_~Bax 
R)CuO5 should lose superconduct ivi ty  be- 
yond a certain x value. We show this to 
be the case by  preparing and characterizing 
Tl(Srl_xBa~La)CuO 5 as a function of x. 

Samples of  Tl(Srl_~BaxLa)CuOs were 
prepared  by heating stoichiometric amounts  
of  T1203, SrO2, BaO2, La203, and CuO in a 
sealed gold tube at 865~ for 12 hr and then 
cooling to room tempera ture  in the furnace. 
Powder  diffraction pat terns were obtained 
using a Scintag PAD IV X-ray diffracto- 
meter ,  and the unit cell parameters  were 
refined using a least-square procedure.  
Meissner  effects were measured  by the ac 
induction technique, and resistivities were 
measured  by the standard four-probe 
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FIG. 1. V a r i a t i o n  o f  t he  a a n d  c p a r a m e t e r s  o f  

T l (S r l_xBaxLa)CuO5  as  a f u n c t i o n  o f  x.  

method.  Single phase samples of  
TI(Sr l_ ,Ba,La)  CuO5 can be prepared  for 
all values of  x = 0.0-1.0.  Powder  X-ray 
diffraction pat terns  of  the prepared  samples 
were indexed on a tetragonal lattice with 
space group P4/mmm. 

Figure 1 plots the unit cell parameters  a 
and c of  Tl(Srl_xBaxLa)CuO5 as a function 
ofx.  The a and c parameters  increase gradu- 
ally with increasing x, as anticipated. Table  
I summarizes  the electrical propert ies  mea- 
sured for TI(Sr l_xBaxLa)CuO5 as a function 
ofx.  Superconduct ivi ty is observed  for sam- 
ples with x = 0.0-0.3.  This means that holes 

T A B L E  1 

ELECTRICAL PROPERTIES OF T l ( S r l _ x B a , L a ) C u O s  

o a t  300 K p a t 4 . 2 K  

x ( O h m  cm)  ( O h m  cm)  C o m m e n t  

0 .0  2.5 • 10 .3 T c - 42 K 

0.2  3.3 • 10 .3 T c - 44 K 

0.3 2 .0  • 10 .3 T c - 37 K 

0.4  7 .0  • 10 -3 6.5 • 10 .3 s e m i m e t a l - l i k e  
0.5 5 .6  x 10 3 6 .0  • 10 .3 s e m i m e t a l - l i k e  

0 .6  2 x 10 -2 1 • 10 -1 s e m i c o n d u c t o r  

0 .8  4 2 • 102~ s e m i c o n d u c t o r  

1.0 1.3 • 102 4 • 103a s e m i c o n d u c t o r  

a M e a s u r e d  a t  77 K .  
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are created in the C H O  2 layers due to the over- 
lap between X 2 - -  y2 and the T1 6s bands for 
these x values. Samples with x = 0.4-0.5 ex- 
hibit nearly temperature-independent elec- 
trical resistivities. This semimetal-like be- 
havior, expected for a semiconductor with 
very small band gap, suggests that the bottom 
of the T16s bands lies only slightly above the 
Fermi level for these x values. Samples with 
x = 0.6-1.0 show typical semiconducting be- 
havior. This shows that the x 2 - y2 band is 
further lowered to produce a larger band gap 
for these x values. Furthermore, the resisti- 
vity p at a given temperature increases with 
x, which shows that the band gap of 
TI(Srl _xBaxLa)CuO5 increases with increas- 
ingx. All of these findings reflect the facts that 
the x 2 - y 2  bands are antibonding between 
the in-plane copper and oxygen atoms, that 
the in-plane Cu-O bond length increases as 
more 9-coordinate sites are occupied by 
larger cations, and consequently that the ex- 
tent of the overlap between the x 2 - y2 and 
the TI 6s bands decreases, due largely to the 
lowering of the x 2 - y 2  band, with increasing 
in-plane Cu-O bond length. 

To summarize, the superconducting prop- 
erty of Tl(Srl_xBa~La)CuO5 is controlled by 
substitution of isovalent cations (i.e., Ba z+ 
for Sr2+), because the in-plane Cu-O bond 
length is affected by the steric effects ex- 
erted by the 9-coordinate site cations. Our 
work shows that Tl(Srl ~Ba~La)CuO5 loses 
superconductivity for x > 0.3. 
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